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Making Reliability Reliable:
A Systematic Approach to
Reliability Coefficients

Eunseong Cho1

Abstract
The current conventions for test score reliability coefficients are unsystematic and chaotic. Relia-
bility coefficients have long been denoted using names that are unrelated to each other, with each
formula being generated through different methods, and they have been represented inconsistently.
Such inconsistency prevents organizational researchers from understanding the whole picture and
misleads them into using coefficient alpha unconditionally. This study provides a systematic naming
convention, formula-generating methods, and methods of representing each of the reliability
coefficients. This study offers an easy-to-use solution to the issue of choosing between coefficient
alpha and composite reliability. This study introduces a calculator that enables its users to obtain the
values of various multidimensional reliability coefficients with a few mouse clicks. This study also
presents illustrative numerical examples to provide a better understanding of the characteristics and
computations of reliability coefficients.
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Coefficient alpha (hereinafter alpha) is the most commonly used single-administration test score

reliability coefficient (hereinafter reliability coefficient). Whereas previous studies such as Cortina

(1993) and Schmitt (1996) offered influential lessons on alpha for organizational researchers, it is

still commonly misconceived and widely misused (Cho & Kim, 2015; Dunn, Baguley, & Brunsden,

2013; Green & Yang, 2009a; Raykov, 2012; Sijtsma, 2009a; Yang & Green, 2011). Another study

that focuses only on alpha is not likely to resolve the chronic misconceptions and misapplications. A

better approach to ascertaining the characteristics of alpha is considering other reliability coeffi-

cients together with alpha. Once we know the commonalities and differences between alpha and

other reliability coefficients, we can naturally discern the conditions under which it should or should
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not be used. However, there is an obstacle that prevents organizational researchers from looking at

the big picture.

The current conventions for reliability coefficients are haphazard and undisciplined. Our knowl-

edge of reliability was not built in a day by a genius. For more than a hundred years, numerous

researchers (e.g., Brown, 1910; Spearman, 1910) have developed reliability coefficients in various

ways, but during this process, they were named, interpreted and expressed inconsistently. The

present of reliability coefficients is locked in the past (i.e., path dependence). The way reliability

coefficients are currently being named, computed, and used lacks reliability, which makes it difficult

for new users of reliability to determine the whole picture.

This study attempts to improve the reliability of reliability coefficients. I describe my approach as

systematic because I propose a system composed of reliability coefficients and that can conditionally

suggest appropriate reliability coefficients depending on the characteristics of the data. The system

includes most of the reliability coefficients commonly used in real-world data analyses or explained

in research methods textbooks such as the Spearman–Brown formula, the Flanagan–Rulon formula,

standardized alpha, alpha, stratified alpha, McDonald’s omega, and so-called composite reliability.

This study proves that various reliability coefficients are generated from measurement models

nested within the bifactor measurement model. The idea of estimating reliability based on a mea-

surement model in the large framework of structural equation modeling (SEM) is not new. For

example, Miller (1995) employed an SEM path diagram to explain the meaning of alpha and its

correct use. McDonald (1985, 1999) and Zinbarg, Revelle, and Yovel (2007) argued that alpha is a

special case of omega when the data meet a certain prerequisite. This study is an extension of such

previous studies, and it offers a more comprehensive analysis on a number of reliability coefficients

and their algebraically equivalent variations instead of concentrating on one or two.

This study consists of three sections. The ‘‘problems’’ section examines the current practice and

declares that alpha is ill positioned as a representative of reliability coefficients. The ‘‘a systematic

approach’’ section claims that a successful repositioning of reliability coefficients may be based on

their renaming and formula re-expressions. The ‘‘examples’’ section offers various computation

examples and introduces a gadget that calculates various reliability coefficients with a few mouse

clicks.

Problems in Current Practice

This study begins by determining what the problem is and assessing how widespread it is.1 In

previous studies criticizing alpha’s misuse, such misuse has typically consisted of one or both of

the following types:

1. Alpha is most frequently used even though it is not the most accurate reliability coefficient

(i.e., it is overused)

2. Alpha’s use is unqualified if its assumptions such as tau-equivalency are not examined (i.e., it

is incorrectly used)

However, little research has empirically examined the fundamental premise that alpha is over-

used and/or incorrectly used in practice. One may raise a counterargument that alpha is not as

severely misused as the existing literature suggests. For example, a reasonable argument is that

although alpha was overused in the past, organizational researchers are increasingly switching from

alpha to other reliability coefficients based on the influence of recent methodological studies that

discourage the use of alpha. Another plausible expectation is that although articles appearing in less

prestigious journals may use alpha without examining its assumptions, high-impact journal articles

demonstrate exemplary use of reliability coefficients because the reviewers and editors demand
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higher standards of methodological rigor. To evaluate how seriously alpha is misused in organiza-

tional research, this study examined two elite journals, namely, the Academy of Management

Journal (AMJ) and the Journal of Applied Psychology (JAP).

In addition to diagnosing whether alpha is overused and/or incorrectly used, this study addresses

two other issues relevant to current practice. First, this study examines what terms are currently used to

denote reliability coefficients. This is necessary because the study will later discuss the unreliability of

reliability coefficients’ names. Second, this study considers whether the use of confirmatory factor

analysis (CFA) or SEM was reported. Composite reliability, which is based on a unidimensional SEM

measurement model, is the second most frequently used reliability coefficient in organizational

research (Peterson & Kim, 2013). This study predicts that the use of SEM will have an effect on the

choice of reliability coefficient: Those studies that employ SEM are more likely to report composite

reliability rather than alpha, and those studies that do not rely on SEM are more likely to use alpha.

Let us explain the method of data collection. After searching all articles except editorials that

were published in AMJ and JAP during the years 2013 and 2014, I included empirical studies that

reported single-administration test score reliability estimates and excluded studies that used other

types of reliability (e.g., interrater reliability) and meta-analysis. The sample consisted of 42 AMJ

articles from a total of 145 (29.0%) and 96 JAP articles from a total of 147 (65.3%). When multiple

names were used to express the same reliability coefficient, the unabridged or more descriptive ones

were recorded. For example, if both Cronbach’s alpha and a were used, the former was coded as the

name. If both internal consistency reliability and a were used, the latter was coded as the name.

Table 1 shows the results. More than 80% of the studies used alpha. No studies reported the use of

any reliability coefficients other than alpha and composite reliability. Approximately 10% of the

studies did not clearly indicate what reliability coefficients were used. No studies examined the

Table 1. The Current Use of Reliability Coefficients in Two Top Journals.

AMJ (n ¼ 42) JAP (n ¼ 96)

n % n %

Used reliability coefficients Alpha only 35 83.3 84 87.5
CR only 1 2.4 1 1.0
Alpha and CR 2 4.8 2 2.1
Not identified 4 9.5 9 9.4

Tau-equivalency Examined 0 0.0 0 0.0
Not examined 42 100.0 96 100.0

Use of CFA/SEM Reported 27 64.3 44 45.8
Not reported 15 35.7 52 54.2

Name of alpha Cronbach’s alpha 13 35.1 30 34.9
Coefficient alpha 7 18.9 15 17.4
a 10 27.0 31 36.0
Others 7 18.9 10 11.6

Note: AMJ is the Academy of Management Journal, JAP is the Journal of Applied Psychology, CR is composite reliability, CFA is
confirmatory factor analysis, and SEM is structural equation modeling. The percentages in the ‘‘name of alpha’’ row are the
ratios of each cell to the number of those studies that reported the use of alpha, and the percentages in other rows are the
ratio of each cell to the total number of examined studies of each journal. Names such as internal consistency reliability,
internal consistency, and reliability were classified as ‘‘not identified.’’ Names such as Cronbach alpha, Cronbach’s alpha
reliability, and Cronbach’s a were classified as ‘‘Cronbach’s alpha.’’ Names such as alpha, alpha reliability, and alpha coeffi-
cients were classified as ‘‘others.’’
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assumption of tau-equivalency. A total of 16 versions of alpha’s name were recorded. Among them,

frequently used names were Cronbach’s alpha, coefficient alpha and a.

Alpha’s overuse was more serious than anticipated. First, the use of SEM had little effect on the

choice of reliability coefficients. Most studies that employed SEM still used alpha instead of

SEM-based reliability coefficients such as composite reliability. Second, 1 in 10 studies unexpect-

edly did not specify the name of the utilized reliability coefficients. A plausible explanation for why

researchers report reliability estimates namelessly is that they take the use of alpha for granted and

thus feel little need to report a commonplace thing.

Alpha’s incorrect use was also more severe than expected. Not a single study examined tau-

equivalency. That is, organizational researchers are automatically using alpha without considering

whether its assumptions are satisfied. Such unconditional choice probably stems from one or some

combination of the following misconceptions:

1. Alpha is a versatile reliability coefficient that is applicable to any type of data

2. Alpha is robust to any violation of its assumptions (i.e., even a serious violation of the

assumptions has an insignificant effect on the value of the reliability estimate)

3. A high value of alpha itself verifies that its assumptions are satisfied

4. Identifying whether alpha’s assumptions are satisfied is difficult

5. Alternative methods that can be used when its assumptions are violated are difficult to use

This study claims that each of the above statements is incorrect by providing formula derivations

(i.e., Misconception 1), counterexamples (i.e., Misconceptions 2 and 3), illustrative examples, and

an easy-to-use solution (i.e., Misconceptions 4 and 5). For example, by showing various computa-

tion examples, this study demonstrates that alpha can produce estimation errors as large as .14 when

it is misapplied to data that violate one of its assumptions. In addition to disproving such miscon-

ceptions, understanding what caused them is necessary for finding a fundamental solution.

A brief review of alpha’s history is useful for identifying the underlying source of its misuse. Its

popularity did not originate from its technical superiority. It became a de facto standard even at the

existence of a mathematically superior predecessor (l2: Guttman, 1945) for several reasons that seemed

important at the time of Cronbach (1951) but that are trivial from a modern view (Cho & Kim, 2015).

First, alpha’s computation was simpler. Second, Cronbach (1951) positioned alpha as a reliability

coefficient, whereas Guttman (1945) described li as lower-bound estimators of reliability, which was

mathematically correct but represented an unpopular description. Third, Cronbach’s (1951) proof that

alpha equals the average of the reliability values (l4: Guttman, 1945) that are calculated for all possible

split-halves positioned it as a general reliability coefficient. Although it seems intuitively attractive, the

average is not as meaningful as the maximum (Osburn, 2000) or the minimum (Revelle, 1979) of the l4

values that are obtained from all possible split-halves (for a modern interpretation, see Hunt & Bentler,

2015). A positive feedback loop and past popularity bred today’s situation. Once the habit of uncondi-

tionally using alpha was formed, it prospered despite the development of more sophisticated methods.

Alpha’s habitual use is a matter not of mathematics but of marketing. Alpha ranked consistently

low in previous comparison studies that examined the accuracy of reliability coefficients (Kamata,

Turhan, & Darandari, 2003; Osburn, 2000; Revelle & Zinbarg, 2009; Tang & Cui, 2012; van der

Ark, van der Palm, & Sijtsma, 2011). What differentiates alpha from other reliability coefficients is

that the awareness of the name alpha outdistances that of any other reliability coefficients. In other

words, its name is the main cause of its immense use. Analyzing the reason for the phenomenal

citation record of Cronbach (1951), Cronbach (1978) echoed this argument by stating that ‘‘I am sure

the paper is cited mostly because I put a brand name on a common-place coefficient’’ (p. 263).

His comments capture the essence; alpha is a brand name. The reason a researcher automatically

chooses alpha without understanding its formula is analogous to the reason why a laundry detergent
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consumer habitually selects a familiar brand not knowing its chemical composition. Even if a compar-

ison study were to reveal that the most popular brand underperforms its competitors, the top-of-mind

brand (e.g., Gillette) would not lose significant market share. This phenomenon is what is occurring with

alpha. Its use frequency remains unchanged despite the unfavorable results of several performance tests.

However, if the brand name becomes null and void for some reason, its sales volume will rapidly

decrease. Previous studies that placed sole reliance on a mathematical approach failed to change the

65-year-old habit. A deep-rooted problem requires a more comprehensive solution that includes a

radical cure. Rebranding alpha is an efficient way to reposition it into the place where it belongs.

A Systematic Approach to Reliability Coefficients

Measurement Models

Before proceeding with the discussion, let us explain the measurement models used in this study

starting from unidimensional models. Figure 1 provides a description of SEM styles regarding uni-

dimensional parallel, tau-equivalent and congeneric measurement models. The term unidimensional

will be omitted when little possibility of confusion exists. The modifiers strictly and essentially

indicate whether item means are constrained to be equal. For example, an essentially tau-

equivalent model includes a constant, whereas a strictly tau-equivalent model does not. Although

the addition of a constant has an effect on the mean, it does not affect the variances, covariances or the

value of reliability. This study focuses on essentially parallel/tau-equivalent/congeneric models and

omits the term essentially for simplicity. Manifest variables (X1, X2, . . . ) have a common latent

variable (F) and errors (e1, e2, . . . ). Errors are assumed to be purely random and independent of each

other. To determine the scale, the variance of the latent variable is set to a nonzero number (typically

1.0). The congeneric model does not have additional constraints. The tau-equivalent model is the

same as the congeneric model, only with the constraint that all the factor loadings are equal. The

parallel model is the tau-equivalent model with the constraint that the error variances are all equal.

Table 2 presents interitem covariance matrices of data that perfectly satisfy the conditions of

being parallel, tau-equivalent and congeneric. Covariances (i.e., off-diagonal elements of the covar-

iance matrices) between observed item scores are determined only by the common latent variable,

whereas variances (i.e., diagonal elements of the covariance matrices) of item scores are determined

by the common latent variable and errors. Parallel data have equal interitem covariances and equal

item variances. Tau-equivalent data have equal interitem covariances, but they may have different

item variances. Congeneric data do not require the equality constraints about variances and covar-

iances. Any parallel data are also tau-equivalent, and any tau-equivalent data are also congeneric.

Figure 1. The parallel, tau-equivalent, and congeneric measurement models.
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Now, let us consider multidimensional models. Three major models conceptualize multidimen-

sionality in SEM (Figure 2): the correlated factor model, the second-order factor model, and the

bifactor model. A unidimensional model consists of only a common construct (i.e., T in Figure 1)

Table 2. Covariance Matrices of Data That Satisfy the Conditions of Being Parallel, Tau-equivalent, and
Congeneric.

A. Observed Test Score Variance B. True Score Variance C. Error Variance

Parallel reliability
r̂P ¼ ð32 � 6Þ
=ð32 � 6þ 3 � 4Þ
¼ :8181

X1 X2 X3 X1 X2 X3 X1 X2 X3
X1 10 6 6 X1 6 6 6 X1 4 0 0
X2 6 10 6 X2 6 6 6 X2 0 4 0
X3 6 6 10 X3 6 6 6 X3 0 0 4

Tau-equivalent reliability
r̂T ¼ ð32 � 5Þ=60 ¼ :75

X1 X2 X3 X1 X2 X3 X1 X2 X3
X1 8 5 5 X1 5 5 5 X1 3 0 0
X2 5 10 5 X2 5 5 5 X2 0 5 0
X3 5 5 12 X3 5 5 5 X3 0 0 7

Congeneric reliability

r̂C ¼ ð2þ 3þ 4Þ2=
100 ¼ :81

X1 X2 X3 X1 X2 X3 X1 X2 X3
X1 10 6 8 X1 22 3�2 4�2 X1 6 0 0
X2 6 16 12 X2 2�3 32 4�3 X2 0 7 0
X3 8 12 22 X3 2�4 3�4 42 X3 0 0 6

Note: If tau-equivalent reliability (e.g., alpha) is misapplied to the above congeneric data, it underestimates the reliability by
.03 (r̂T ¼ â ¼ ð32 � ðð6þ 8þ 12Þ=3ÞÞ=100 ¼ :78).

Figure 2. Three major multidimensional measurement models.
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and omits subtest constructs. A correlated factor model includes only subtest constructs (i.e., Dp in

Figure 2) and neglects a common construct. The common construct of a bifactor model is called a

general factor (i.e., F), and its subtest constructs are called group factors (i.e., Gp). The common

construct in a second-order factor model is called a second-order factor (i.e., Q), and its subtest

constructs are called first-order factors (i.e., Op). To determine the scale, the variances of common

constructs and subtest constructs are usually set to 1.0 (i.e., VarðGpÞ ¼ VarðFÞ ¼ VarðOpÞ ¼
VarðQÞ ¼ VarðDpÞ ¼ 1 for all p).

The bifactor model is a generalization of the second-order factor model, and the latter is nested

within the former. Mathematically speaking, the latter is equivalent to the former only under the

proportionality constraint (Yung, Thissen, & McLeod, 1999). Before explaining the proportionality

constraint, this study notes that group factors are defined to be independent of a general factor but that

first-order factors are dependent on a second-order factor. Disturbances (i.e., zi) are mathematically

analogous to group factors because both explain the variances that are not explained by a common

construct. The variance due to the disturbance is proportional to the variance due to the second-order

factor between manifest variables that have the same first-order factor. For example, let us consider

Y1 and Y2. Any effect of the second-order factor (i.e., Q) or the disturbance on Y1 or Y2 must be

mediated by the coefficients l11 or l21.Y1’s ratio of the variance due to the disturbance to the variance

due to the second-order factor (i.e., l2
11s

2
z1
=l2

11g
2
1) is equal to that of Y2 (i.e., l2

21s
2
z1
=l2

21g
2
1). The

corresponding ratio of X1 (i.e., l2
11=l

2
1F) may differ from that of X2 (i.e., l2

21=l
2
2F) in a bifactor model.

This study offers a direct formula that computes the omega coefficient of a second-order factor

model without a transformation. McDonald derived omega from a bifactor model. Applying its

formula to a second-order factor model requires a Schmid–Leiman transformation (Schmid & Lei-

man, 1957) of the parameter estimates (Brunner, Nagy, & Wilhelm, 2012; Yung et al., 1999), which

is unfamiliar to typical organizational researchers. A direct formula provides an easier computation

and a better understanding of its meaning.

This study introduces multidimensional parallel models and multidimensional tau-equivalent

models. The conditions of being parallel and tau-equivalent have only been discussed in unidimen-

sional models in the literature. If such restrictions were so useful in deriving meaningful reliability

coefficients (e.g., alpha and standardized alpha) from unidimensional models, they must be equally

advantageous to multidimensional models. The second-order factor parallel model (Figure 3)

requires four restrictions: The path coefficients between the second-order factor and all first-order

factors are restricted to be equal to each other (i.e., gp ¼ g for all p), the first-order factor loadings of

all items are restricted to be equal to each other (i.e., li ¼ l for all i), all first-order factors are

restricted to have equal numbers of items (i.e., np ¼ n for all p), and the errors of all items are

restricted to be equal to each other (i.e., s2
ei
¼ s2

e for all i). The second-order factor tau-equivalent

model requires three restrictions that are identical to those of the second-order factor parallel model,

except for the equality constraint of the error variances (i.e., s2
ei
6¼ s2

ej
). Appendix B shows that the

reliability coefficients that are derived from bifactor parallel/tau-equivalent models are identical to

the reliability coefficients that are derived from second-order factor parallel/tau-equivalent models.

Systematic Nomenclature

Table 3 presents the names of reliability coefficients that are currently used in the literature. The

conventional names of reliability coefficients are not user friendly. First, they do not deliver

meaningful information to the users. For example, names such as Spearman–Brown or Flana-

gan–Rulon provide only the names of those who discovered these formulas without expanding on

their characteristics. Although respect for these scholars is displayed, the names do not consider

the needs of users.
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Second, the names are inconsistent. Some are called formulas (e.g., Spearman–Brown and Flana-

gan–Rulon), some are called coefficients (e.g., alpha), and others are called lower bounds (e.g., Gutt-

man’s li). Some bear their originators’ names (e.g., Spearman–Brown), and some use a combination of

the first and second developers’ names (e.g., Flanagan–Rulon). One estimator goes by the name of the

fourth person to propose it (Cronbach, 1951), and others do not bear the name of any developers.

Third, they are not mutually exclusive. Formulas that are algebraically equivalent have different

names, such as the Flanagan–Rulon formula and Guttman’s l4. Without background knowledge,

users may accept these names as referring to different formulas. On the other hand, one name is used

to represent multiple formulas. McDonald (1978) defined omega in a multidimensional context and

later used the term regardless of the dimensionality (McDonald, 1999). Previous studies are increas-

ingly using omega as a general name for various SEM-based reliability coefficients (Brunner et al.,

2012; Cho & Kim, 2015; Dunn et al., 2013; Green & Yang, 2015; Lucke, 2005; Padilla & Divers,

2013; Revelle & Zinbarg, 2009). Whenever readers encounter the term omega, they must understand

the context to know exactly which formula was used. Although methodologists may accept such

Figure 3. Two suggested multidimensional measurement models.
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mixed use as being convenient, it can confuse nonexperts. Raju coefficients also require special

attention; Raju (1970, 1977) coefficients require the specification of the years of publication to avoid

confusion because the researcher proposed two reliability coefficients.

Fourth, the current nomenclature is not expandable. Not all reliability coefficients have names.

Table 3 indicates that a reliability estimator based on a multidimensional parallel model is a theore-

tically possible reliability coefficient that no one has yet formally proposed, thereby leading to its lack

of a name. While generally accepted rules for naming a newly developed reliability coefficient do not

exist, a naming method that was popular in the past is choosing one of the Greek letters, for example,

a(Cronbach, 1951), b (Revelle, 1979), l (Guttman, 1945), m (Ten Berge & Zegers, 1978), y (Armor,

1974), and o (McDonald, 1978). This naming strategy is not sustainable because we are running short

of Greek letters. Greek letters such as s, e, r, and t are almost exclusively used for frequently used

methodological notions, and most of the remaining Greek letters (e.g.,f, z, g, andx) are habitually used

in the SEM literature. Using one of them as the name of a reliability coefficient would confuse users.

Table 4 shows the names proposed by this study. A systematic nomenclature should be informa-

tive, consistent, mutually exclusive and expandable. It should effectively and economically convey

the characteristics of each method as well as their commonalities and differences. A systematic name

of a reliability coefficient should also be combined with its use. For example, imagine that Fisher

(1925) named the formula of two-way ANOVA (analysis of variance) after himself. We would spend a

long time memorizing when to use the Fisher formula. If we rename alpha as tau-equivalent reliability,

we do not need to learn the conditions under which it should be used once we know the tau-equivalent

measurement model. A systematic nomenclature becomes easier once we become accustomed to it.

This study provides additional cautionary tales on the expressions Cronbach’s alpha and compo-

site reliability because they are the most commonly used but misleading names. First, let us consider

Cronbach’s alpha. At the time of Cronbach’s (1951) publication, this formula was already

‘‘a common-place coefficient’’ (Cronbach, 1978, p. 263) and usually called KR-20. Kuder and

Richardson (1937) proposed several new reliability formulas but did not name them. The designa-

tion ‘‘KR-20’’ referred to its being the 20th formula in their article. Cronbach (1951) claimed that

KR-20 was an awkward name for something that would be used frequently; thus, he proposed a new

Table 3. Names of Reliability Coefficients Currently Used in the Literature.

Unidimensional Multidimensional

Split-Half General General

Parallel Spearman–Brown formula Standardized alpha (Not yet published)

Tau-equivalent Flanagan–Rulon formula
Flanagan formula
Rulon formula
Guttman’s l4

Cronbach’s alpha
Coefficient alpha
Guttman’s l3

Hoyt method
KR-20

Stratified alpha

Congeneric Raju (1970) coefficient
Angoff–Feldt coefficient
Angoff coefficient

Composite reliability
Construct reliability
Congeneric reliability
Omega
Unidimensional omega
Raju (1977) coefficient
Classical congeneric

reliability coefficient

Omega
Omega total
McDonald’s omega
Multidimensional omega
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name: coefficient alpha. This name, however, had the potential to be confusing because the name

alpha was regularly used in research methodology textbooks to denote other concepts such as

significance level (e.g., a ¼ .05). Thus, calling it Cronbach’s alpha would have provided the users

more discernibility than simply referring to it as alpha. Such convention, however, gives a mislead-

ing impression that Cronbach first developed the formula, and Cronbach (2004) opposed the expres-

sion Cronbach’s alpha.

Next, let us consider composite reliability. At least seven names are used to represent a reliability

estimator based on a congeneric model in the literature: composite reliability, construct reliability (e.g.,

Hair, Black, Babin, & Anderson, 2010), congeneric reliability (e.g., Graham, 2006; Lucke, 2005),

classical congeneric reliability coefficient (Feldt & Brennan, 1989), omega (McDonald, 1999), uni-

dimensional omega (Cho & Kim, 2015) and Raju (1977) coefficient. Among them, composite reliability

is the least appropriate for the name of a specific reliability coefficient because it is shorthand for the

reliability of composite scores (Cho & Kim, 2015). This name may even cause erroneous associations

such as with complex or synthesized reliability. Below is my criticism in terms of history.

The originator of this formula intended to use the term congeneric, not composite. The term

composite reliability first appeared in Werts, Rock, Linn, and Jöreskog (1978), in which the authors

called it simply ‘‘reliability’’ but referred to it as ‘‘the composite reliability’’ once when they

compared it with single-item reliability. Few pioneers of this formula called it composite reliability

or any other term. It is ironic that the lack of an appropriate alternative caused the unintended name

to become widely used. Jöreskog (1971) also did not suggest a special name for the reliability

coefficient he developed and simply called it reliability. However, the term congeneric is what he

coined to describe its measurement model. Congeneric reliability is a name that honors his

contribution.

Readers should consider the parallel use of conventional and systematic names if neces-

sary. Some conventional names, such as alpha, are too deeply embedded in our memory to

remove in the short term. Even if a researcher uses only a systematic name in his or her

study, the reviewers and readers are likely to be unfamiliar with it. Using both conventional

and systematic names may enhance the fidelity of communication. For example, tau-

equivalent reliability can be denoted as ‘‘tau-equivalent reliability (i.e., alpha).’’ If the sys-

tematic nomenclature becomes more common in the future, it will substitute the conventional

nomenclature in the long term.

Table 4. Names and Notations of Reliability Coefficients Suggested in This Study.

Unidimensional Multidimensional

Split-Half General General

Parallel Split-half parallel reliability
(rSP)

Parallel reliability (rP) Multidimensional parallel reliability
(rMP)

Tau-equivalent Split-half tau-equivalent
reliability (rST)

Tau-equivalent
reliability (rT)

Multidimensional tau-equivalent
reliability (rMT)

Congeneric Split-half congeneric reliability
(rSC)

Congeneric reliability
(rC)

Bifactor model
Bifactor reliability (rBF)

Second-order factor model
Second-order factor reliability (rSOF)

Correlated factors model
Correlated factors reliability (rCF)
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Systematic Derivation of the Formula

Although understanding how a formula was derived is the best way to understand its essence, the

literature on reliability often overlooks the derivations of formulas. Four problems are associated

with this practice. First, few articles comprehensively and systematically address the derivation of

formulas regarding various reliability coefficients. Second, due to the lack of related research, the

various original studies that discovered these formulas are being used as the sole source of deriva-

tions. Third, the derivational methods used in the original studies were not able to utilize later, more

efficient methodologies, which means that the original studies use more complex methods even

though simpler derivational methods have since been developed. Fourth, most reliability coefficients

were derived using different sets of logic, leading to a lack of consistency in derivational methods.

For example, to derive formulas that are algebraically equivalent, Hoyt (1941) used the ANOVA

approach, whereas Cronbach (1951) calculated the average of the split-half reliability coefficient

obtained from all possible split halves.

The current study proves that various reliability coefficients can be derived from measurement

models nested within the bifactor model. The goal of the current study is to propose a derivational

method for formulas that clearly reveal the basic assumptions of each reliability coefficient and

the difference between each reliability coefficient. The derivations based on the unidimensional

model are displayed here, and the derivations based on multidimensional models will appear in

Appendix B.

The definition of reliability. Let us define test score reliability in the unidimensional model or classical

true score model (Lord & Novick, 1968). Consider a test that is composed of k dichotomously or

polytomously scored items. This study defines the test score X as the sum of k observed scores Xi:

X ¼
Pk

i¼1 Xi. The unidimensional model assumes that Xi consists of two unobserved scores: the true

score Ti and the error ei. This study assumes that no specific factors exist to circumvent the

controversial issue of specific factors and errors (Bollen, 1989). Ti is further deconstructed into two

components such that Ti ¼ mi þ liT . Thus, the observed score of item i is expressed as

Xi ¼ Ti þ ei ¼ mi þ liT þ ei. The constant mi has essentially no effect on variances or covariances

and thus has no effect on the value of the reliability. Factor loading li is interpreted as the impor-

tance, discrimination or effective length of item i. The variance of a latent variable is fixed to unity

(i.e., VarðTÞ ¼ 1) without loss of generality to determine the scale. Errors are purely random and are

not correlated with the true score (i.e., CovðTi; eiÞ ¼ CovðTi; ejÞ ¼ 0). This study further assumes

that errors are not correlated with each other (i.e., Covðei; ejÞ ¼ 0). The reliability is defined as the

ratio of the true score variance to the test score variance: rXX
0 ¼ s2

T

s2
X

¼ s2
T

s2
T
þs2

E

.

The unidimensional parallel model. The unidimensional parallel model restricts the factor loading and

error variance of each item to be equal (i.e., li ¼ l and s2
ei
¼ s2

e for all i). The variance of item i is

l2 þ s2
e , and the covariance between item i and j is l2. Let c denote l2 þ s2

e .

Special case (k ¼ 2). Let r12 denote the ratio of l2 to c. r12 equals the product-moment correlation

between the first and second items (or split half). The interitem covariance matrix is as follows:

Ssp ¼ l2 þ s2
e l2

l2 l2 þ s2
e

����
���� ¼ c

1 r12

r12 1

����
���� ¼ c

r12 r12

r12 r12

����
����þ c

1� r12 0

0 1� r12

����
����

The sums of the second, third, and fourth matrices are s2
X, s2

T, and s2
E, respectively. Therefore,

s2
T ¼ 4cr12, and s2

E ¼ 2cð1� r12Þ. Brown (1910) and Spearman (1910) independently and simul-

taneously developed an algebraically equivalent formula for split-half parallel reliability. The
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derived version (rSP) and the original version (~rSP) are as follows:

rSP ¼
s2

T

s2
T þ s2

E

¼ 4r12

4r12 þ 2ð1� r12Þ
; and ~rSP ¼

2r12

1þ r12

General case. Let �rij denote the ratio of l2 to c. �rij equals the average product-moment correlation

between items. The interitem covariance matrix in the unidimensional parallel model is as follows:

Sup ¼ c

1 �rij � � � �rij

�rij 1 � � � �rij

..

. ..
. . .

. ..
.

�rij �rij � � � 1

���������

���������
¼ c

�rij �rij � � � �rij

�rij �rij � � � �rij

..

. ..
. . .

. ..
.

�rij �rij � � � �rij

���������

���������
þ c

1� �rij 0 � � � 0

0 1� �rij � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1� �rij

���������

���������
The sum of the second k � k matrix (i.e., s2

T ), of which all elements are �rij, is ck2�rij. The sum of

the third k � k matrix (i.e., s2
E), of which all diagonal elements are 1� �rij, is ckð1� �rijÞ. The

derived version (rP) of parallel reliability is algebraically equivalent to the formula known as

standardized alpha (~rP). Specifically,

rP ¼
s2

T

s2
T þ s2

E

¼
k2�rij

k2�rij þ kð1� �rijÞ
; and ~rP ¼

k�rij

1þ ðk � 1Þ�rij

The unidimensional tau-equivalent model. The unidimensional tau-equivalent model (Novick &

Lewis, 1967) restricts the factor loadings of each item to be equal (i.e., li ¼ l for all i). The

observed score of item i is expressed as Xi ¼ mi þ lF þ ei. The unidimensional parallel model is

nested within the unidimensional tau-equivalent model, and the only difference between them is

the equality restriction of error variances. The variance of item i is l2 þ s2
ei

, and the covariance

between item i and j is l2.

Special case (k ¼ 2). Let s2
1 (¼ l2 þ s2

e1
) and s2

2 (¼ l2 þ s2
e2

) denote the variance of the first and

second items, respectively, or the split-half, and let s12 (¼ l2) denote the covariance between

them. The interitem covariance matrix and split-half tau-equivalent reliability (rST ) are as

follows:

Sst ¼
l2 þ s2

e1
l2

l2 l2 þ s2
e2

�����
����� ¼ s2

1 s12

s12 s2
2

����
���� ¼ s12 s12

s12 s12

����
����þ s2

1 � s12 0

0 s2
2 � s12

����
����; and

rST ¼
s2

T

s2
X

¼ 4s12

s2
X

:

Flanagan (1937), Guttman (l4, 1945), Rulon (1939), and Mosier (1941) proposed formulas that

are algebraically equivalent to rST :

~rF ¼
4r12s1s2

s2
1 þ s2

2 þ 2r12s1s2

¼ 4s12

s2
1 þ s2

2 þ 2s12

¼ 4s12

s2
X

¼ rST ;

~rRulon ¼ 1�
s2

X1�X2

s2
X

¼ ðs
2
1 þ s2

2 þ 2s12Þ � ðs2
1 þ s2

2 � 2s12Þ
s2

X

¼ 4s12

s2
X

¼ rST ;

~rM ¼
4ðr1Xs1sX � s2

1Þ
s2

X

¼ 4ðs2
1 þ s12 � s2

1Þ
s2

X

¼ 4s12

s2
X

¼ rST ; and
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~l4 ¼ 2 1� s2
1 þ s2

2

s2
X

� �
¼ 2

ðs2
1 þ s2

2 þ 2s12Þ � ðs2
1 þ s2

2Þ
s2

X

� �
¼ 4s12

s2
X

¼ rST :

General case. Let �sij denote l2. �sij equals the average covariance between items. The interitem

covariance matrix is as follows:

Sut ¼

s2
1 �sij � � � �sij

�sij s2
2 � � � �sij

..

. ..
. . .

. ..
.

�sij �sij � � � s2
k

���������

���������
¼

�sij �sij � � � �sij

�sij �sij � � � �sij

..

. ..
. . .

. ..
.

�sij �sij � � � �sij

���������

���������
þ

s2
1 � �sij 0 � � � 0

0 s2
2 � �sij � � � 0

..

. ..
. . .

. ..
.

0 0 � � � s2
k � �sij

���������

���������
:

Cronbach (~a, 1951), Guttman (~l3, 1945), Hoyt (1941), and Kuder and Richardson (1937) pro-

posed formulas that are algebraically equivalent to tau-equivalent reliability. Kuder and Richardson

(1937) expressed the formula (i.e., KR-20) slightly differently from others because they applied the

formula to dichotomously score items (i.e., Xi ¼ 0 or 1). Let pi denote the percentage of correct

responses for item i. We obtain the formula of tau-equivalent reliability (rT ) by dividing the sum of

the second matrix by s2
X . The conventional version (~rT ) and KR-20 (~rKR�20) are all algebraically

equivalent to rT . Specifically,

rT ¼
s2

T

s2
X

¼ k2 �sij

s2
X

; ~rT ¼ ~a ¼ ~l3 ¼
k

k � 1
1�

X
s2

i

s2
X

 !
; and

~rKR�20 ¼
k

k � 1
1�

X
pið1� piÞ
s2

X

 !
¼ k

k � 1
1�

X
s2

i

s2
X

 !
¼ k

k � 1

X
i6¼

X
j

sij

s2
X

0
BB@

1
CCA¼ k2 �sij

s2
X

¼ rT :

The unidimensional congeneric model. The unidimensional congeneric model (Jöreskog, 1971) is an

unrestricted base model. The observed score of item i is expressed as Xi ¼ mi þ liT þ ei. The

unidimensional tau-equivalent model is nested within the unidimensional congeneric model, and

the only difference between them is the equality restriction on the factor loadings. The variance of

item i is l2
i þ s2

ei
, and the covariance between items i and j is lilj.

Special case (k ¼ 2). The interitem covariance matrix and split-half congeneric reliability (rSC) are as

follows:

Ssc ¼
l2

1 þ s2
e1

l1l2

l1l2 l2
2 þ s2

e2

�����
����� ¼ l2

1 l1l2

l1l2 l2
2

����
����þ s2

e1
0

0 s2
e2

����
����; and

rSC ¼
s2

T

s2
X

¼ ðl1 þ l2Þ
2

s2
X

:

This coefficient cannot be estimated without further constraints because the model is under-

identified. Specifically, there are more unknowns (i.e., l1, l2, s2
e1

, and s2
e2

) than known pieces of

information (i.e., s2
1, s2

2, and s12) (Feldt & Brennan, 1989; Haertel, 2006). Appendix A shows how

previous studies addressed this issue.
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General case. The interitem covariance matrix, the derived formula of congeneric reliability (rC), and

the conventional version (~rC) are as follows:

Suc ¼

l2
1 þ s2

e1
l2l1 � � � lkl1

l1l2 l2
2 þ s2

e2
� � � lkl2

..

. ..
. . .

. ..
.

l1lk l2lk � � � l2
k þ s2

ek

����������

����������
¼

l2
1 l2l1 � � � lkl1

l1l2 l2
2 � � � lkl2

..

. ..
. . .

. ..
.

l1lk l2lk � � � l2
k

���������

���������
þ

s2
e1

0 � � � 0

0 s2
e2
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � s2
ek

���������

���������
;

rC ¼
s2

T

s2
X

¼

�X
li

�2

s2
X

; and ~rC ¼

�X
li

�2

�X
li

�2

þ
X

s2
ei

:

Systematic Expression of Formula

A formula may have multiple algebraically equivalent versions. For example, the definition of

reliability can be expressed in several ways, including rXX
0 ¼ s2

T

s2
X

¼ s2
T

s2
T
þs2

E

¼ 1� s2
E

s2
X

. Henceforth,

algebraically equivalent variations will be referred to as versions or formula expressions. When a

formula is more complex, it is more difficult to observe the algebraic equivalence of the formula and

its many versions. If no consistent rule exists for selecting which version to use, users will express

the same formula in different ways, which will ultimately lead to an increased difficulty in under-

standing the meaning of the formula and discovering commonalities.

Table 5 presents a summary of conventional formula expressions. Excluding the relationship

between split-half parallel reliability (i.e., the Spearman–Brown formula) and parallel reliability

(i.e., standardized alpha), no commonalities or regularities between the formulas occur. Some

formulas are a subtraction of a certain value from 1, and others are not. One formula has s2
X as the

denominator, whereas others have other elements in their denominators. It appears as if these

formulas are not related to each other.

The current principle applied when expressing the formula of a reliability coefficient is that the

formula expression used by the author of the original article is used. This convention is author

friendly but not reader friendly. The formula expression chosen by the author and the expression

easily understood by readers is different for three reasons. First, each formula is derived using

different methods with various interpretations. The derivational method and the interpretation of

the formulas also influenced their expression.

Second, authors are rewarded for the distinctiveness of their work, not consistency. Academia

prefers studies that are different from previous studies; those that present results that are similar to

existing findings are not highly regarded. Researchers may attempt to express different versions of

formulas and propose different methods of interpretation.

Third, authors have preferred formula expressions that are computationally simple. Many relia-

bility formulas were published in an era during which they could be calculated only by hand instead

of with computers. Because of social inertia, computationally simpler formulas have been chosen

even after computer-based computational processes became common. Thus, the most famous ver-

sions of formulas are typically those that require the fewest calculations (Falk & Savalei, 2011).

The three problems mentioned above suggest a direction for our proposed systematic formula

expression. First, the system should include a consistent set of principles. Second, this study’s goal is

to connect apparently disparate formulas to a degree in which users can easily recognize the

common features of the formulas. Third, its goal is not to provide ease of calculation; rather, it
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wants to provide ease of understanding. In the current environment in which all calculations are

dependent on computers, ease of calculation cannot be an important consideration for users.

Table 6 summarizes the formula expressions that the current study proposes. This study applies a

consistent set of principles. More specifically, between matrix expressions and nonmatrix expres-

sions, this study uses nonmatrix expressions. The denominator is made consistent to be s2
X or its

equivalent, and the numerator is made consistent to be equivalent to s2
T . The sum is presented in the

order of true score þ error or general factor þ group factor þ error. This study does not reduce

fractions to their lowest terms. For example, in the formula expression of parallel reliability, that is,
k2�rij

k2�rijþkð1��rijÞ
, k2�rij represents s2

T and kð1� �rijÞ denotes s2
E.

The systematic formula expressions provide us with an intuitive understanding about the condi-

tion under which reliability coefficients have a value of less than zero. The definition of reliability

i:e:;rXX
0 ¼ s2

T

s2
X

¼ 1� s2
E

s2
X

��
tells us that the value of reliability always ranges between zero and one.

Contrary to the popular belief that the value of a reliability estimate also always ranges

between zero and one, it can be negative if the prerequisite of the reliability estimator is not

satisfied. Table 6 reveals that the value of congeneric model-based reliability coefficients is

always nonnegative, whereas the value of parallel or tau-equivalent model-based reliability coef-

ficients can be negative.

This study derives two hierarchical omega coefficients from multidimensional parallel and

multidimensional tau-equivalent models. McDonald (1985, 1999) proposed two definitions of

reliability that are applicable to multidimensional models, and Zinbarg, Revelle, Yovel, and Li

(2005) more explicitly expressed McDonald’s proposal, recommending it be categorized into o,

which were relabeled as ot in Revelle and Zinbarg (2009), and oH (or oh). oH is called

hierarchical omega or omega hierarchical. The formula of the McDonald–Zinbarg hierarchical

omega includes only the variance due to a general factor in the numerator (i.e., oH ¼ s2
General

s2
X

),

whereas that of omega includes the variance due to general factor and the variance due to group

factors in the numerator (i.e., rBF ¼ o ¼ s2
General

þs2
Group

s2
X

). Although obtaining bifactor or second-

order factor hierarchical omega requires parameter estimates that are obtained from multidi-

mensional SEM models, estimating parallel/tau-equivalent hierarchical omega does not rely on SEM

procedures. Previous studies strongly have recommended the use of hierarchical omega (Revelle &

Table 5. Conventional Formula Expressions of Reliability Coefficients.

Unidimensional Multidimensional

Split-Half General General

Parallel 2r12

1þr12

k�rij

1þðk�1Þ�rij
(Not yet published)

Tau-equivalent 1�
s2

X1�X2

s2
X

k
k�1 1�

Pk
i¼1 s

2
i

s2
X

� �
1�

Pm
p¼1

s2
pð1� apÞ

s2
X

Congeneric s12

p1p2s2
X

Pk
i¼1 li

� �2

Pk
i¼1 li

� �2

þ
Pk

i¼1 s
2
ei

1
0
cc
0
1þ1

0
AA

0
1

s2
X

Note: s2
X is observed test score variance, k is the number of items, �rij is the average product-moment correlation between

items, li in the unidimensional models is the factor loading of item i, and m is the number of group factors. Other notations
are explained in Appendices A and B.
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Zinbarg, 2009; Zinbarg et al., 2005; Zinbarg et al., 2007; Zinbarg, Yovel, Revelle, & McDonald, 2006).

If the concept of hierarchical omega is useful for bifactor models, it must be equally advantageous to

multidimensional tau-equivalent and multidimensional parallel models. Table 7 displays their formulas.

This study classifies the reliability of multidimensional models into two hierarchical levels: the

reliability of a measurement model and the reliability of subtest constructs. Offering both test reliability

and subtest reliability estimates may provide more complete information about the measurement. Table

8 shows the formulas of subtest reliability. Formulas of subtest reliability coefficients of multidimen-

sional parallel, multidimensional tau-equivalent and correlated factors models are a minor modification

of those of parallel reliability, tau-equivalent reliability, and congeneric reliability. Subtest reliability

coefficients of bifactor and second-order factor models do not have analogous unidimensional reliability

coefficients. Brunner et al. (2012) extended the concept of hierarchical omega to the subtest reliability

level; however, they used the term to denote the ratio of the variances due to group factors to test score

variances (i.e., % group factor in Table 8), which is different from the way Zinbarg et al. (2005) defined

hierarchical omega at the test reliability level (i.e., % general factor). Because using the term hierarch-

ical omega at the level of subtest reliability can be confusing, this study employed generic terms.

Systematic Use

Although tau-equivalent reliability (i.e., alpha) is the most popular reliability coefficient among organi-

zational researchers, experts treat it quite differently. Previous studies are practically unanimous in

declaring that there must be an alternative to the current practice of indiscriminately using this coefficient,

Table 6. Systematic Formula Expressions of Reliability Coefficients.

Unidimensional Multidimensional

Split-Half General General

Parallel 4r12

4r12þ2ð1�r12Þ
k2�rij

k2�rijþkð1��rijÞ
k2�rdþnkð�rs��rdÞ

k2�rdþnkð�rs��rdÞþkð1��rsÞ

Tau-equivalent 4s12

s2
X

k2 �sij

s2
X

k2 �sdþnkð�ss��sdÞ
s2

X

Congeneric
ðl1þl2Þ

2

s2
X

Pk
i¼1 li

� �2

s2
X

Bifactor reliability�Pk
i¼1 liF

�2

þ
Pm

p¼1

�Pk
i¼1 lip

�2

s2
X

Correlated factors reliability

Pm
p¼1

Pm
q¼1 fpq

�Pk
i¼1 lip

��Pk
i¼1 liq

�
s2

X
Second-order factor reliability�Pm

p¼1

Pk
i¼1 lipgp

�2

þ
Pm

p¼1

�Pk
i¼1 lipð1� g2

pÞ
1=2
�2

s2
X

Note: �sij is the average covariance between items, liF is the general factor loading of item i, lip is the factor loading of item i on
p th subtest construct (i.e., Gp, Op, or Dp), n is the number of items per group factor, �rd is the average product-moment
correlation between items that have different group factors, �rs is the average product-moment correlation between items
that have the same group factor, �sd is the average covariance between items that have different group factors, �ss is the
average covariance between items that have the same group factor and m is the number of group factors. Other notations are
explained in Appendices A and B.
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although little consensus exists about exactly which alternative technique should replace alpha (Bentler,

2009; Green & Yang, 2009b; Hunt & Bentler, 2015; Osburn, 2000; Revelle & Zinbarg, 2009; Schmidt, Le,

& Ilies, 2003; Sijtsma, 2009b; van der Ark et al., 2011). The current study does not propose a specific

reliability estimator as an alternative; rather, it delineates a system composed of multiple methods.

This study does not agree with the unconditional use and denial of tau-equivalent reliability.

Criticizing alpha’s unconditional use is different from advocating that another alternative should take

its seat and be universally used instead. To prevent the blind use of tau-equivalent reliability, previous

studies have criticized it using rather strong language. For example, Peters (2014) claimed that we

should abandon alpha because it is ‘‘a fatally flawed estimate of its reliability’’ (p. 56). This study

encourages the use of tau-equivalent reliability if the data meet the condition of being tau-equivalent.

What this study disapproves of is the concept of a single best reliability coefficient that is appropriate

for all types of data sets, which implicitly assumes that the objective function is one dimensional.

Any reliability coefficient in a system is not superior or inferior to another because they simply

assume different measurement models. The evaluation criteria of a scientific model are at least two

Table 7. Four Coefficients of Hierarchical Omega.

Description Formula

Parallel Parallel hierarchical
omega (oHP)

k2�rd

k2�rdþnkð�rs��rdÞþkð1��rsÞ

Tau-equivalent Tau-equivalent hierarchical
omega (oHT)

k2 �sd

s2
X

Second-order factor Second-order factor hierarchical
omega (oHSOF)

�Pm
p¼1

Pk
i¼1 lipgp

�2

s2
X

Bifactor Bifactor hierarchical
omega (oHBF)

�Pk
i¼1 liF

�2

s2
X

Note: The notations are explained in Table 4, and the derivations are listed in Appendix B.

Table 8. Formulas of Subtest Reliability in Multidimensional Models.

Subtest Reliability
% General

Factor % Group Factor

Multidimensional
Parallel (PrMP)

n2�rXi2Gp

n2�rXi2Gp
þnð1��rXi2Gp

Þ — —

Multidimensional

Tau-equivalent (PrMT)
n2 �sXi2Gp

s2
Xi2Gp

— —

Bifactor (PrBF)
�P

i2Gp
liF

�2

þ
�P

i2Gp
lip

�2

s2
Xi2Gp

�P
i2Gp

liF

�2

s2
Xi2Gp

�P
i2Gp

lip

�2

s2
Xi2Gp

Second-order
factor(PrSOF)

�P
i2Op

lipgp

�2

þ
�P

i2Op
lipð1� g2

pÞ
1=2
�2

s2
Xi2Op

�P
i2Op

lipgp

�2

s2
Xi2Op

�P
i2Op

lipð1� g2
pÞ

1=2
�2

s2
Xi2Op

Correlated factors
(PrCF)

�P
i2Dp

lip

�2

s2
Xi2Dp

— —
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dimensional; a good model should explain the maximum amount of data using the fewest elements.

SEM measurement models provide a trade-off between goodness of fit (i.e., chi-square) and parsimony

(i.e., degree of freedom), and less parsimonious models should have significantly better goodness of

fit. Unidimensional models are nested within multidimensional models, and tau-equivalent models are

nested within congeneric models. When comparing two competing SEM models where one is nested

within another, we typically use the chi-square difference to test significance.

Recommendations for use. Figure 4 shows a guideline for choosing a reliability coefficient. The chi-

square difference test represents major statistical criteria at all steps. How to identify the dimension-

ality (i.e., STEP 1) of data is an important but controversial issue. Numerous methods have been

proposed to test unidimensionality (Hattie, 1985). Sometimes, exploratory factor analysis or CFA

can be used to examine the dimensionality of data. This study will introduce a gadget that enables

users to perform CFA without SEM software.

Organizational researchers should combine theoretical considerations with statistical criteria

when deciding which measurement model to use. A researcher’s judgment is especially important

when choosing between multidimensional models (i.e., STEP 3). A bifactor model or a second-order

model have a hierarchy that consists of a common construct and subtest constructs. A correlated

factors model is composed of only subtest constructs. A key question is whether the researcher has a

theoretical interest in a common construct and whether it has theoretical underpinnings (Brunner

et al., 2012). The answer is affirmative in many cases because a common construct is what scale

developers originally intended to measure and what typical researchers are most interested in (Cho

& Kim, 2015; Reise, 2012). The use of correlated factor reliability is questionable because the use of

a total test score of a correlated factors model is not recommended (McDonald, 1999). Brunner et al.

(2012) advocated the use of only subtest reliability coefficients when a correlated factors model is

selected. Reporting correlated factor reliability may have the merit of providing additional infor-

mation about the measurement; however, complete reliance on it is not recommended.

Examples and a Calculator

Illustrative Examples

Understanding a formula promotes its frequent use. Organizational researchers rarely use multi-

dimensional reliability coefficients, even though they usually study multifaceted phenomena and

analyze multidimensional data. Such lack of use probably originates from their limited awareness

STEP 1. Identify the dimensionality of the data.
Dependencies: Chi-square difference test, exploratory factor analysis, confirmatory factor analysis
Decision: If unidimensional, go to step 2; otherwise, go to step 3.

STEP 2. Identify the statistical similarity of the unidimensional data
Dependencies: Chi-square difference test
Decision: If parallel, use rP (i.e., standardized alpha). If tau-equivalent, use rT (i.e., coefficient alpha);

otherwise, use rC (i.e., so-called composite reliability).

STEP 3. Determine the measurement model of the multidimensional data
Dependencies: Chi-square difference test and theoretical considerations
Decision: If multidimensional parallel, use rMP , oHP and sub-test reliability coefficients. If multidimensional

tau-equivalent, use rMT (i.e., stratified alpha), oHT and sub-test reliability coefficients. If the bi-factor model,
use rBF , oHB and sub-test reliability coefficients. If the second-order factor model, use rSOF , oHS and
sub-test reliability coefficients. If the correlated factor model, use rCF and sub-test reliability coefficients.

Figure 4. A guideline for choosing a reliability coefficient.
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and understanding of multidimensional reliability coefficients. The terms awareness and under-

standing denote different meanings here. For example, thus far, this study is likely to make readers

aware of the names and formulas of multidimensional reliability coefficients but is unlikely to make

the readers understand their meaning. A good way to understand a complex formula is to apply it to a

simple numerical example. This study presents a unidimensional example and five multidimensional

examples to make the formulas more comprehensible to readers.

Let us start from a comparison of tau-equivalent reliability and congeneric reliability. Table 9

omits the upper triangle of the covariance matrices, as done by typical SEM software packages.

Readers should be careful to use the sum of the fitted or implied covariance matrix (i.e., ŝ2
X ) instead

of the sum of the observed covariance matrix (i.e., s2
X ) when they calculate the estimate of con-

generic reliability. The fitted covariance matrix is computed from the parameter estimates. For

example, 4:42 ¼ 1:96 � 2:25 and 10:00 ¼ 1:962 þ 6:13.

Table 10 presents a decomposition of the covariance matrix of multidimensional parallel data.

Readers may find the meaning of multidimensional parallel reliability difficult to understand

because it is new to them and has a complex form. The denominator of the formula of multidimen-

sional parallel reliability, that is,
k2�rdþnkð�rs��rdÞ

k2�rdþnkð�rs��rdÞþkð1��rsÞ
, consists of three parts, corresponding to the

sum of all elements of B, C, and D in Table 10. k2�rd is proportional to the variance due to the general

factor (s2
General). In the example, the number of items (k) is 6, and the average product-moment

correlation between items that have different group factors is .3, which leads to the value of

62 � :3 ¼ 10:8. nkð�rs � �rdÞ is proportional to the variance due to group factors (s2
Group). In Table

10, the average product-moment correlation between items that have the same group factor is .5, and

the sum of all elements of C is 3 � 6 � ð:5� :3Þ ¼ 3:6. kð1� �rsÞ is proportional to the variance due to

errors (s2
E), and the corresponding value in Table 10 is 6ð1� :5Þ ¼ 3. Substitution of these values

into the formula leads to r̂MP ¼ :8276.

Table 9. A Computation of Tau-equivalent Reliability and Congeneric Reliability.

Observed Covariance Matrix

X1 X2 X3 X4 P
total ¼

P
diagonalþ

P
off�diagonal ¼124P

diagonal ¼10þ 11þ 12þ 13 ¼ 46P
off�diagonal ¼2 �

P
sub�diagonal ¼2 � ð4þ 5þ 6þ 7þ 8þ 9Þ ¼ 78

X1 10
X2 4 11
X3 5 6 12
X4 7 8 9 13

Proposed formula expression r̂T ¼ â ¼ 42 � ð78=ð4 � 3ÞÞ=124 ¼:8387
Conventional formula expression r̂T ¼ â ¼ ð4=3Þ � ð1� 46=124Þ ¼:8387

Fitted/Implied Covariance Matrix Factor Loadings and Errors

X1 X2 X3 X4 l̂i ŝ2
ei

X1 10.00 X1 1.96 6.13
X2 4.42 11.00 X2 2.25 5.92
X3 4.98 5.71 12.00 X3 2.53 5.56
X4 6.98 7.99 9.01 13.00 X4 3.55 .37P

124.23
P

10.30 18.01
¼ 2 � ð

P
sub�diagonalþ

P
diagonalÞ�

P
diagonal

P
2 106.22

Proposed formula expression r̂C ¼ 106:22=124:23 ¼:8550
Conventional formula expression r̂C ¼ 106:22=ð106:22þ 18:01Þ ¼:8550
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Matrices A and B of Table 11 illustrate the commonalities and differences between multidimen-

sional tau-equivalent reliability and other related reliability coefficients. First, the values of multi-

dimensional tau-equivalent reliability equal those of stratified alpha, and the computation of the

former is more understandable than that of the latter. Second, tau-equivalent reliability (i.e., alpha)

underestimates the reliability when it is applied to multidimensional data. Third, the values of

hierarchical omega that were computed from the two data sets differ greatly, even though those

of reliability are equal.

Let us further discuss the relationships between reliability, hierarchical omega and unidimen-

sionality based on Table 11. First, unidimensionality should be identified before reliability is

calculated. Many users perform the reverse; they calculate reliability to identify unidimensionality,

misconceiving that a high value of a unidimensional reliability coefficient indicates unidimension-

ality (Cortina, 1993; Green, Lissitz, & Mulaik, 1977; Hattie, 1985; Schmitt, 1996). Table 11 dis-

proves this misconception; the tau-equivalent reliability estimates of Matrices A and B exceed the

commonly used cut-off criterion (Lance, Butts, & Michels, 2006), even though both were computed

from multidimensional data.

Second, the concept of hierarchical omega and unidimensionality should be distinguished. A

glance at Table 11 may give readers a misleading impression that the level of hierarchical omega is

related with the degree of unidimensionality or homogeneity. Although hierarchical omega is a

matter of degree, dimensionality is a yes-or-no issue (Zinbarg et al., 2006); all data are either

unidimensional or multidimensional. Unidimensionality should be distinguished from the degree

to which total test scores reflect a common construct (Reise, 2012). For example, Matrix A is

multidimensional, but most of its variances are due to a general factor. Matrix D is unidimensional,

but only a small fraction of its variances originate from a general factor.

Third, hierarchical omega is not a substitute of reliability; it is a complement of reliability.

Although hierarchical omega originated from another definition of reliability that is derived from

Table 10. A Computation Example of Multidimensional Parallel Reliability.

A Observed Test Score Variance
(s2

X ¼ 17:4)
B The Variance Due to General Factor

(s2
General ¼ 62 � :3 ¼ 10:8)

X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X5 X6
X1 1 .5 .5 .3 .3 .3 .3 .3 .3 .3 .3 .3
X2 .5 1 .5 .3 .3 .3 .3 .3 .3 .3 .3 .3
X3 .5 .5 1 .3 .3 .3 .3 .3 .3 .3 .3 .3
X4 .3 .3 .3 1 .5 .5 .3 .3 .3 .3 .3 .3
X5 .3 .3 .3 .5 1 .5 .3 .3 .3 .3 .3 .3
X6 .3 .3 .3 .5 .5 1 .3 .3 .3 .3 .3 .3

C The Variance Due to Group Factors
(s2

Group ¼ 3 � 6 � ð:5� :3Þ ¼ 3:6)
D The Variance Due to Errors

(s2
E ¼ 6 � ð1� :5Þ ¼ 3)

X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X5 X6
X1 .2 .2 .2 0 0 0 .5 0 0 0 0 0
X2 .2 .2 .2 0 0 0 0 .5 0 0 0 0
X3 .2 .2 .2 0 0 0 0 0 .5 0 0 0
X4 0 0 0 .2 .2 .2 0 0 0 .5 0 0
X5 0 0 0 .2 .2 .2 0 0 0 0 .5 0
X6 0 0 0 .2 .2 .2 0 0 0 0 0 .5

Note: If tau-equivalent reliability (e.g., alpha) is misapplied to the above data, it underestimates the reliability by .0414
(r̂T ¼ â ¼ ð62 � ðð:3 � 9þ :5 � 6Þ=15ÞÞ=17:4 ¼ :7862).
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multidimensional models, its characteristics are different from other reliability coefficients. For

example, matrices A and B of Table 11 show that the values of hierarchical omega are substantially

smaller than those of other reliability coefficients. Various reliability coefficients share the common

definition of 1� s2
E

s2
X

, whereas hierarchical omega is defined by 1�
�

s2
Group
þs2

E

s2
X

�
. Hierarchical omega

does not differentiate the variances due to group factors from the variances due to errors. Neither

reliability nor hierarchical omega offers complete information about the data. For example,

knowing that the value of the multidimensional tau-equivalent reliability is .9 does not allow us

to judge whether it was calculated from A or B. The value of hierarchical omega alone cannot

discriminate between A and C nor between B and D. Hierarchical omega displays a different

aspect of the data that reliability does not show, and using a combination of the two enables us to

see other sides of the data.

Table 12 shows a computation of bifactor reliability. The parameter estimates are

l̂1F ¼ l̂6F ¼ l̂31 ¼ l̂42 ¼ 1, l̂2F ¼ l̂5F ¼ l̂11 ¼ l̂21 ¼ l̂52 ¼ 2, l̂3F ¼ l̂62 ¼ 3, l̂4F ¼ 4 and

l̂12 ¼ l̂22 ¼ l̂32 ¼ l̂41 ¼ l̂51 ¼ l̂61 ¼ 0. A proportionality constraint does not exist (e.g.,

1 : 2 : 3 6¼ 2 : 2 : 1). These values lead to r̂BF ¼ ð169þ 61Þ=260 ¼ :8846, 1r̂BF ¼ ð36þ 25Þ=
75 ¼ :8133, 2r̂BF ¼ ð49þ 36Þ=101 ¼ :8415, and ôHBF ¼ 169=260 ¼ :65. The value of the tau-

equivalent reliability (i.e., alpha) is .7795, which underestimates the reliability by .1051.

Table 11. A Computation Example of Multidimensional Tau-equivalent Reliability.

A Multidimensional (Strong General Factor and
Weak Group Factors)

B Multidimensional (Weak General Factor and
Strong Group Factors)

X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X5 X6
X1 8 5 5 4 4 4 10 8 8 1 1 1
X2 5 8 5 4 4 4 8 12 8 1 1 1
X3 5 5 7 4 4 4 8 8 12 1 1 1
X4 4 4 4 8 5 5 1 1 1 12 8 8
X5 4 4 4 5 8 5 1 1 1 8 10 8
X6 4 4 4 5 5 9 1 1 1 8 8 10

r̂MT ¼ ð62 � 4þ 3 � 6 � ð5� 4ÞÞ=180 ¼ :9
ôHT ¼ ð62 � 4Þ=180 ¼ :8
r̂T ¼ â ¼ ð62 � 4:4Þ=180 ¼ :88

âStratified ¼ 1� ð53 � :1510þ 55 � :1819Þ=180 ¼ :9
1r̂MT ¼ ð32 � 5Þ=53 ¼ :8490

2r̂MT ¼ ð32 � 5Þ=55 ¼ :8181

r̂MT ¼ ð62 � 1þ 3 � 6 � ð8� 1ÞÞ=180 ¼ :9
ôHT ¼ ð62 � 1Þ=180 ¼ :2
r̂T ¼ â ¼ ð62 � 3:8Þ=180 ¼ :76

âStratified ¼ 1� ð82 � :1220þ 80 � :1Þ=180 ¼ :9
1r̂MT ¼ ð32 � 8Þ=82 ¼ :8780

2r̂MT ¼ ð32 � 8Þ=80 ¼ :9

C Unidimensional (Strong General Factor and No
Group Factors)

D Unidimensional (Weak General Factor and No
Group Factors)

X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X5 X6
X1 10 4 4 4 4 4 20 1 1 1 1 1
X2 4 10 4 4 4 4 1 25 1 1 1 1
X3 4 4 8 4 4 4 1 1 25 1 1 1
X4 4 4 4 10 4 4 1 1 1 25 1 1
X5 4 4 4 4 12 4 1 1 1 1 25 1
X6 4 4 4 4 4 10 1 1 1 1 1 30

r̂T ¼ â ¼ ôHT ¼ ð62 � 4Þ=180 ¼ :8 r̂T ¼ â ¼ ôHT ¼ ð62 � 1Þ=180 ¼ :2
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Table 13 shows a computation of second-order factor reliability. The parameter estimates are

l̂11 ¼ l̂31 ¼ l̂52 ¼ l̂62 ¼ 5, l̂21 ¼ l̂42 ¼ 10, l̂12 ¼ l̂22 ¼ l̂32 ¼ l̂41 ¼ l̂51 ¼ l̂61 ¼ 0, ĝ1 ¼ :6,

ĝ2 ¼ :8, ð1� ĝ2
1Þ

1=2 ¼ :8, ð1� ĝ2
2Þ

1=2 ¼ :6, and s2
X ¼ ŝ2

X ¼ 1400. The italicized numbers on the

outside of the box originate from the parameter estimates. For example, 3 in B is l̂1 � ĝ1 ¼ 5 � :6 ¼ 3,

and 4 in C is l̂1 � ð1� ĝ2
1Þ

1=2 ¼ 5 � :8 ¼ 4. A proportionality constraint exists such that

Table 12. A Computation Example of Bifactor Reliability.

A Observed Test Score Variance
s2

X ¼ 260
B Variances Due to a General Factor
ð1þ 2þ 3þ 4þ 2þ 1Þ2 ¼ 169

X1 X2 X3 X4 X5 X6 1 2 3 4 2 1
X1 10 6 5 4 2 1 1 1�1 1�2 1�3 1�4 1�2 1�1
X2 6 12 8 8 4 2 2 2�1 2�2 2�3 2�4 2�2 2�1
X3 5 8 15 12 6 3 3 3�1 3�2 3�3 3�4 3�2 3�1
X4 4 8 12 22 10 7 4 4�1 4�2 4�3 4�4 4�2 4�1
X5 2 4 6 10 14 8 2 2�1 2�2 2�3 2�4 2�2 2�1
X6 1 2 3 7 8 15 1 1�1 1�2 1�3 1�4 1�2 1�1

C Variances Due to Group Factors
ð2þ 2þ 1Þ2 þ ð1þ 2þ 3Þ2 ¼ 61

D Variances Due to Errors
s2

E ¼ 30

2 2 1 1 2 3 X1 X2 X3 X4 X5 X6
2 2�2 2�2 2�1 0 0 0 X1 5 0 0 0 0 0
2 2�2 2�2 2�1 0 0 0 X2 0 4 0 0 0 0
1 1�2 1�2 1�1 0 0 0 X3 0 0 5 0 0 0
1 0 0 0 1�1 1�1 1�3 X4 0 0 0 5 0 0
2 0 0 0 2�1 2�1 2�3 X5 0 0 0 0 6 0
3 0 0 0 3�1 3�1 3�3 X6 0 0 0 0 0 5

Table 13. A Computation Example of Second-order Factor Reliability.

A Observed Test Score Variance
s2

X ¼ 1400
B Variances Due to a Second-Order Factor

ð3þ 6þ 3þ 8þ 4þ 4Þ2 ¼ 784

Y1 Y2 Y3 Y4 Y5 Y6 3 6 3 8 4 4
Y1 60 50 25 24 12 12 3 3�3 3�6 3�3 3�8 3�4 3�4
Y2 50 126 50 48 24 24 6 6�3 6�6 6�3 6�8 6�4 6�4
Y3 25 50 60 24 12 12 3 3�3 3�6 3�3 3�8 3�4 3�4
Y4 24 48 24 130 50 50 8 8�3 8�6 8�3 8�8 8�4 8�4
Y5 12 24 12 50 60 25 4 4�3 4�6 4�3 4�8 4�4 4�4
Y6 12 24 12 50 25 80 4 4�3 4�6 4�3 4�8 4�4 4�4

C Variances Due to Disturbances
ð4þ 8þ 4Þ2 þ ð6þ 3þ 3Þ2 ¼ 400

D Variances Due to Errors
s2

E ¼ 216

4 8 4 6 3 3 Y1 Y2 Y3 Y4 Y5 Y6
4 4�4 4�8 4�4 0 0 0 Y1 35 0 0 0 0 0
8 8�4 8�8 8�4 0 0 0 Y2 0 26 0 0 0 0
4 4�4 4�8 4�4 0 0 0 Y3 0 0 35 0 0 0
6 0 0 0 6�6 6�3 6�3 Y4 0 0 0 30 0 0
3 0 0 0 3�6 3�3 3�3 Y5 0 0 0 0 35 0
3 0 0 0 3�6 3�3 3�3 Y6 0 0 0 0 0 35
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3 : 6 : 3 ¼ 4 : 8 : 4 and 8 : 4 : 4 ¼ 6 : 3 : 3. These values lead to r̂SOF ¼ ð784þ 400Þ=
1400 ¼ :8457, 1r̂SOF ¼ ð144þ 256Þ=496 ¼ :8064, 2r̂SOF ¼ ð256þ 144Þ=520 ¼ :7692, and

ôHSOF ¼ 784=1400 ¼ :56. The value of the tau-equivalent reliability (i.e., alpha) is .7577, which

underestimates the reliability by .088.

Table 14 shows a computation of the correlated factor reliability. The parameter estimates

are l̂11 ¼ l̂21 ¼ l̂42 ¼ l̂62 ¼ 2, l̂31 ¼ 4, l̂52 ¼ 3, l̂12 ¼ l̂22 ¼ l̂32 ¼ l̂41 ¼ l̂51 ¼ l̂61 ¼ 0,

f̂11 ¼ f̂22 ¼ 1, and f̂12 ¼ f̂21 ¼ :5. The italicized numbers on the outside of the box originate

from the parameter estimates. For example, 1.5 in C is f̂12 � l̂52 ¼ :5 � 3 ¼ 1:5. These values lead to

r̂CF ¼ ð113þ 56Þ=200 ¼ :8450, 1r̂CF ¼ 64=76 ¼ :8421, and 2r̂CF ¼ 49=68 ¼ :7205. The value of

the tau-equivalent reliability (i.e., alpha) is .7680, which underestimates the reliability by .077.

RelCalc: A Calculator That Computes Reliability Coefficients

A key to ending the blind use of tau-equivalent reliability (i.e., alpha) is improving the user

convenience of its alternatives. Thus far, this study has provided various solutions to resolve

the common misuse of reliability coefficients. Now, it offers a quick fix to the last but not least

problem. Whereas popular statistical software packages such as SPSS and SAS offer an auto-

matic calculation of tau-equivalent reliability, commonly used SEM software packages, except

EQS (Bentler, 2006), do not produce SEM-based reliability estimates. Users of such programs

should personally calculate the value of a reliability coefficient based on its formula. Such

computations are inconvenient and susceptible to mistakes. This is a possible reason why

organizational researchers who use SEM rely on tau-equivalent reliability instead of SEM-

based reliability coefficients. If they could compute congeneric reliability by simply clicking

a mouse, they are likely to use it substantially more frequently. I developed a calculator to

overcome this obstacle. The history of reliability coefficients provides a lesson that publishing

something namelessly is likely to produce an uninformative or confusing name. I call this

calculator RelCalc. It is free to use and distribute.2

Table 14. A Computation Example of Correlated Factor Reliability.

A Observed Test Score Variance
s2

X ¼ 200
B Variances Only Due to Lambdas
ð2þ 2þ 4Þ2 þ ð2þ 3þ 2Þ2 ¼ 113

X1 X2 X3 X4 X5 X6 2 2 4 2 3 2
X1 8 4 8 2 3 2 2 2�2 2�2 2�4 0 0 0
X2 4 8 8 2 3 2 2 2�2 2�2 2�4 0 0 0
X3 8 8 20 4 6 4 4 4�2 4�2 4�4 0 0 0
X4 2 2 4 10 6 4 2 0 0 0 2�2 2�3 2�2
X5 3 3 6 6 16 6 3 0 0 0 3�2 3�3 3�2
X6 2 2 4 4 6 10 2 0 0 0 2�2 2�3 2�2

C Variances Due to Correlations and Lambdas
0:5 � 2 � ð2þ 2þ 4Þ � ð2þ 3þ 2Þ ¼ 56

D Variances Due to Errors
s2

E ¼ 31

2 2 4 2 3 2 X1 X2 X3 X4 X5 X6
1 0 0 0 1�2 1�3 1�2 X1 4 0 0 0 0 0
1 0 0 0 1�2 1�3 1�2 X2 0 4 0 0 0 0
2 0 0 0 2�2 2�3 2�2 X3 0 0 4 0 0 0
1 1�2 1�2 1�4 0 0 0 X4 0 0 0 6 0 0
1.5 1.5�2 1.5�2 1.5�4 0 0 0 X5 0 0 0 0 7 0
1 1�2 1�2 1�4 0 0 0 X6 0 0 0 0 0 6
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RelCalc is a Microsoft Excel spreadsheet consisting of two modules. The first module is designed to

help its users choose the right unidimensional reliability coefficient that fits their data. Graham (2006) gave

an excellent lecture on choosing between tau-equivalent reliability and congeneric reliability. Following

his advice requires readers to fully understand the statistical procedures used to examine the tau-

equivalency assumption. As the results of the first section show, this teach-them-how-to-fish approach

has seen little effect on how typical organizational researchers use reliability coefficients. This study adopts

a give-them-a-fish approach and introduces a program that automates the required statistical procedure.

The first module examines whether the data meet the condition of being parallel or tau-

equivalent and calculates three unidimensional reliability coefficients based on the user’s input

of a covariance matrix. This idea originated from Miles’s (2005) suggestion that the maximum

likelihood estimation, the most commonly used estimation method in SEM, is an optimization

technique that finds a solution to minimize the discrepancy function, and for this, Microsoft Excel

offers an optimization tool.

The second module of RelCalc can compute all multidimensional reliability coefficients that

were included in this study (i.e., Tables 6, 7, and 8). Unlike the first module, the second module does

not estimate the parameters of measurement models; users should copy and paste the parameter

estimates that are obtained from an SEM software.

Conclusion

Reliability coefficients should be understood as building blocks of a single system rather than as a

collection of completely unrelated methods. Although various formulas have been proposed to

estimate the reliability of unidimensional data, they all start from a single formula: the ratio of true

score variance to test score variance. Because the variance of a sum is equal to the sum of all

elements in the covariance matrix of the components, we are actually discussing the covariance

matrix. This study demonstrated the decomposition of covariance matrix for estimating reliability

based on SEM models. We do not require a dozen names for reliability coefficients that are see-

mingly unrelated or a dozen formula expressions that are seemingly unrelated; we need only a single

principle that connects all these reliability coefficients.

Appendix A

Earlier Studies on Unidimensional Congeneric Reliability Coefficients

Special case (k ¼ 2). Raju (1970) introduced a split-half reliability coefficient for when the relative

item lengths are known. Let p1 denote the ratio of the length of the first item (i.e., l1) to the total

length (i.e., l1 þ l2), and let p2 denote the ratio of the length of the second item to the total length.

Raju’s (1970) original formula (~rR1970) is algebraically equivalent to rSC , that is,

~rR1970 ¼
s12

p1p2s2
X

¼ ðl1 þ l2Þðl1 þ l2Þl1l2

l1l2s2
X

¼ ðl1 þ l2Þ2

s2
X

¼ rSC :

Second, Angoff (1953) and Feldt (1975) independently introduced a split-half reliability coeffi-

cient for when the relative item lengths are unknown by restricting p1 ¼ ðs2
1 þ s12Þ=s2

X and

p2 ¼ ðs2
2 þ s12Þ=s2

X ¼ 1� p1. The Angoff–Feldt coefficient (~rAF) is a special case of rSC despite

their different appearances, that is,

~rAF ¼
4s12

s2
X �

s2
1
�s2

2

sX

� �2
¼ 4s12s2

X

s4
X �

�
s2

X ðp1 � p2Þ
�2
¼ 4s12�

1þ ðp1 � p2Þ
��

1� ðp1 � p2Þ
�
s2

X

¼ ~rR1970
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General case. In addition to Jöreskog’s (1971) work, two approaches deserve mention. Let pi denote

the ratio of the length of item i (i.e., li) to the total length (i.e.,
Pk

i¼1 li), and let siX denote
Pk

j¼1 sij.

Raju’s (1977) generalization of his previous formula (~rR1977) is algebraically equivalent to rC .

Feldt’s generalization of the Angoff–Feldt coefficient, or classical congeneric coefficient (~rCC;

Feldt & Brennan, 1989), is a special case of rC when pi ¼ siX=s2
X (Haertel, 2006), that is,

~rR1977 ¼
s2

X �
Xk

i¼1
s2

i�
1�

Xk

i¼1
p2

i

�
s2

X

¼

X
i 6¼

X
j

sijX
i 6¼

X
j

pipjs2
X

¼

�Xk

i¼1
li

��Xk

j¼1
lj

��X
i6¼

X
j

lilj

�
�X

i6¼

X
j

lilj

�
s2

X

¼ rC; and

~rCC ¼
s2

X

�
s2

X �
Xk

i¼1
s2

i

�
s4

X �
Xk

i¼1
ðsiX Þ2

¼
s2

X �
Xk

i¼1
s2

i�
1�

Xk

i¼1
p2

i

�
s2

X

¼ ~rR1977 ¼ rC

Appendix B

Derivations of Multidimensional Reliability Coefficients

Bifactor Model
The definition of reliability. The bifactor model assumes that the observed score of item i consists of

four components such that Xi ¼ mi þ liFF þ lipGp þ ei. This study assumes that no specific factors

exist to circumvent the controversial issue of specific factors and errors. The general factor F is

common to all items. This study fixes the variance of the general factor to unity (i.e., VarðFÞ ¼ 1)

without loss of generality to determine the scale. The group factor Gp is common to items that have

the same group p. This study also fixes the variances of group factors to unity (i.e., VarðGpÞ ¼ 1 for

all p). When k denotes the number of all items, m denotes the number of groups, and np denotes the

number of items that have group factor Gp, the relationships 1 < np < k and
Pm
p¼1

np ¼ k hold. The

general factor F, group factor Gp and random error ei are defined to be independent of each other.

This study further assumes that group factors are independent of each other (i.e., CovðGp;GqÞ ¼ 0

for all p, q) and that errors are independent of each other (i.e., Covðei; ejÞ ¼ 0 for all i, j).

McDonald (1985, 1999) introduced two reliability definitions. Let s2
General denote the sum of the

variances that are due to the general factor, and let s2
Group denote the sum of the variances that are

due to the group factors: s2
General ¼

�Pk
i¼1 liF

�2

, s2
Group ¼

Pm
p¼1

�Pk
i¼1 lip

�2

. The unidimensional

model is nested within the bifactor model. Reliability is defined as the ratio of the sum of s2
General and

s2
Group to the test score variance, and hierarchical omega is defined as the ratio s2

General to the test

score variance: rXX
0 ¼ s2

General
þs2

Group

s2
X

, and oH ¼ s2
General

s2
X

.

Notations. Before proceeding with the derivation, let us define matrix notations used in this study.

A matrix may consist of partitioned matrices or submatrices. For example, the matrix A in Table 10

can be partitioned into 4 3� 3 submatrices such that A ¼ A11 A12

A21 A22

� �
, where

A11 ¼ A22 ¼
1 :5 :5
:5 1 :5
:5 :5 1

2
4

3
5, A12 ¼ A21 ¼

:3 :3 :3
:3 :3 :3
:3 :3 :3

2
4

3
5. When a matrix consists of m row
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submatrices and n column submatrices, this study says that the matrix is an m � n block matrix. For

example, the matrix A is a 2 � 2 block matrix. A square matrix k aii; aij k is a matrix whose ði; iÞ
entry (i.e., diagonal element) is aii and who ði; jÞ entry (i 6¼ j, off-diagonal element) is aij. For

example, A11 is a 3� 3 k 1; :5 k matrix. A square matrix k aij k is a matrix whose ði; jÞ entry is

aij. For example, A12 is a 3� 3 k :3 k matrix. A square matrix k Aii;Aij k is a matrix whose ði; iÞ
submatrix (i.e., diagonal submatrix) is Aii and whose ði; jÞ submatrix (i 6¼ j, off-diagonal submatrix)

is Aij. For example, Table 6 shows a matrix decomposition of kk 1; :5 k; k :3 kk¼
k :3 k þ kk :2 k; k 0 kk þ k :5; 0 k, where kk 1; :5 k; k :3 kk and kk :2 k; k 0 kk are 2 � 2 block

matrices and all submatrices are 3� 3 matrices.

Bifactor parallel model. The bifactor parallel model requires four restrictions: the general factor

loadings of all items are restricted to be equal to each other (i.e., liF ¼ lF for all i), the group factor

loadings of all items are restricted to be equal to each other (i.e., liGp
¼ lG for all i, p), the error

variances of all items are restricted to be equal to each other (i.e., s2
ei
¼ s2

e for all i), and all group

factors are restricted to have equal numbers of items (i.e., np ¼ n for all p, k ¼ mn). The variance of

item i is l2
F þ l2

G þ s2
e , and the covariance between item i and item j is l2

F þ l2
G for i 6¼ j if i and j

have the same group factor and is l2
F for i 6¼ j if i and j have different group factors. Let c denote

l2
F þ l2

G þ s2
e , let �rs denote ðl2

F þ l2
GÞ=c, and let �rd denote l2

F=c. �rs equals the average product-

moment correlation between items that have the same group factor, and �rd equals the average product-

moment correlation between items that have different group factors. The covariance matrix of inter-

item scores will be Smp ¼ c kk 1; �rs k; k �rd kk¼ c k �rd k þc kk �rs � �rd k; k 0 kk þc k 1� �rs; 0 k.
The sum of the k � k matrix c k �rd k represents s2

General and equals ck2�rd . The matrix

c kk �rs � �rd k; k 0 kk is an m � m block matrix, which consists of n� n diagonal submatrices

k �rs � �rd k and n� n off-diagonal submatrices k 0 k. Its sum represents s2
Group and equals

cnkð�rs � �rdÞ. The sum of the k � k matrix c k 1� �rs; 0 k represents s2
E and equals ckð1� �rsÞ. The

bifactor parallel reliability coefficient and parallel form of hierarchical omega are calculated as follows:

rBP ¼
s2

General þ s2
Group

s2
X

¼ k2�rd þ nkð�rs � �rdÞ
k2�rd þ nkð�rs � �rdÞ þ kð1� �rsÞ

; and

oHP ¼
s2

General

s2
X

¼ k2�rd

k2�rd þ nkð�rs � �rdÞ þ kð1� �rsÞ

Bifactor tau-equivalent model. The bifactor parallel model requires three restrictions: the general

factor loadings of all items are restricted to be equal to each other (i.e., liF ¼ lF for all i), the group

factor loadings of all items are restricted to be equal to each other (i.e., lip ¼ lG for all i, p), and all

group factors are restricted to have an equal number of items (i.e., np ¼ n for all p, and k ¼ mn). The

bifactor parallel model is nested within the bifactor tau-equivalent model, and the only difference

between the models is the equality restriction of error variances. The variance of item i is

l2
F þ l2

G þ s2
ei

, and the covariance between item i and item j is l2
F þ l2

G for i 6¼ j if i and j have

the same group factor and is l2
F for i 6¼ j if i and j have different group factors. . Let �ss denote

l2
F þ l2

G, and let �sd denote l2
F . �ss equals the average covariance between items that have the same

group factor, and �sd equals the average covariance between items that have different group factors.

The covariance matrix of the interitem scores will be Smq ¼kk �ss þ s2
ei
; �ss k; k �sd kk¼

k �sd k þ kk �ss � �sd k; k 0 kk þ k s2
ei
; 0 k.

The sum of the k � k matrix k �sd k represents s2
General and equals k2 �sd . The matrix

kk �ss � �sd k; k 0 kk is an m � m block matrix, which consists of n� n diagonal submatrices

k �ss � �sd k and n� n off-diagonal submatrices k 0 k. Its sum represents s2
Group and equals
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nkð�ss � �sdÞ. The derived formulas of bifactor tau-equivalent reliability (rBT ) and the tau-equivalent

form of hierarchical omega are as follows:

rBT ¼
s2

General þ s2
Group

s2
X

¼ k2 �sd þ nkð�ss � �sdÞ
s2

X

; and

oHT ¼
s2

General

s2
X

¼ k2 �sd

s2
X

:

Rajaratnam, Cronbach, and Gleser (1965) applied generalizability theory to derive stratified alpha,

where the term stratified represents multidimensional. Let s2
p denote the sum of all elements of the

covariance matrix of group (or strata in the original article) p, and let ap denote the a that is obtained

from group p. The formula for stratified alpha (~rBT ) is algebraically equivalent to rBT (Rae, 2008):

~rBT ¼ 1�

Xm

p¼1

s2
pð1� apÞ

s2
X

¼
s2

X �
Xm

p¼1

s2
p þ

Xm

p¼1

s2
pap

s2
X

¼

mðm� 1Þn2 �sd þ
Xm

p¼1

s2
p

n2 �ss

s2
p

0
@

1
A

s2
X

¼ mðm� 1Þn2 �sd þ mn2 �ss

s2
X

¼ k2 �sd þ nkð�ss � �sdÞ
s2

X

¼ rBT

Bifactor congeneric model. The bifactor congeneric model is an unrestricted base model. The

bifactor tau-equivalent model is nested within the bifactor congeneric model. The variance of item

i is l2
iF þ l2

ip þ s2
ei

, and the covariance between item i and item j is liFljF þ lipljp for i 6¼ j if i and j

have the same group factor, and liFljF for i 6¼ j if i and j have different group factors. The

covariance matrix of interitem scores is Smq ¼k liFljF k þ kk lipljp k; k 0 kk þ k s2
ei
; 0 k.

The sum of the k � k matrix k liFljF k represents s2
General and equals

Pk
i¼1

Pk
j¼1 liFljF ¼�Pk

i¼1 liF

�2

. The sum of the m � m block matrix kk lipljp k; k 0 kk represents s2
Group and equalsPm

p¼1

�Pk
i¼1

Pk
j¼1 lipljp

�
¼
Pm

p¼1

�Pk
i¼1 lip

�2

. The derived formula of bifactor congeneric relia-

bility (rBC) is algebraically equivalent to McDonald’s original version (~rBC), and the derived formula

of hierarchical omega (oHBF) is equivalent to the conventional version (~oH ) (Cho & Kim, 2015):

rBC ¼
s2

General þ s2
Group

s2
X

¼

�Xk

i¼1
liF

�2

þ
Xm

p¼1

�Xk

i¼1
lip

�2

s2
X

; ~rBC ¼
1
0
cc
0
1þ 1

0
AA

0
1

s2
X

;

oHBF ¼
s2

General

s2
X

¼

�Xk

i¼1
liF

�2

s2
X

; and ~oH ¼
1
0
cc
0
1

s2
X

:

Second-order factor model
The definition of reliability. The second-order factor model assumes that the observed score of item i

consists of three components such that Yi ¼ mi þ lipOp þ ei. The first-order factor Op is determined

by the second-order factor Q and the disturbance zp such that Op ¼ gpQþ zp. Specifically,

Yi ¼ mi þ lipðgpQþ zpÞ þ ei. The variances of a second-order factor and first-order factors are fixed

to unity (i.e., VarðQÞ ¼ 1, VarðOpÞ ¼ 1 for all p) to determine the scale. The variance of the

disturbance zp is 1� g2
p ({VarðOpÞ ¼ VarðgpQþ zpÞ ¼ g2

p þ VarðzpÞ ¼ 1). The second-order
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factor Q, disturbance zp and errors ei are defined to be independent of each other. This study further

assumes that disturbances are independent of each other (i.e., Covðzp; zqÞ ¼ 0 for all p, q), and error

variances are independent of each other (i.e., Covðei; ejÞ ¼ 0 for all i, j). Let k denote the number of

all items, let m denote the number of first-order factors, and let np denote the number of items that

have first-order factor Op.

Let s2
Second�order denote the sum of the variances that are due to the second-order factor, and let

s2
Disturbance denote the sum of the variances that are due to disturbances. Reliability is defined as the ratio

of the sum ofs2
Second�order ands2

Disturbance to the test score variance, and hierarchical omega is defined as

the ratio s2
Second�order to the test score variance: rXX

0 ¼ s2
Second�order

þs2
Disturbance

s2
X

, and oH ¼ s2
Second�order

s2
X

.

Second-order factor parallel model. The second-order factor parallel model requires four restric-

tions: the path coefficients of the second-order factor on all first-order factors are restricted to be

equal to each other (i.e., gp ¼ g for all p), the first-order factor loadings of all items are restricted to

be equal to each other (i.e., li ¼ l for all i), all first-order factors are restricted to have equal

numbers of items (i.e., np ¼ n for all p, k ¼ mn), and the errors of all items are restricted to be

equal to each other (i.e., s2
ei
¼ s2

e for all i).

The variance of item i is l2g2 þ l2ð1� g2Þ þ s2
e ¼ l2 þ s2

e , and the covariance between item i

and item j is l2g2 þ l2ð1� g2Þ ¼ l2 for i 6¼ j if i and j have the same first-order factor, and l2g2 for

i 6¼ j if i and j have different first-order factors. Let c denote l2 þ s2
e , let �rs denote l2=c, and let �rd

denote l2g2=c. The covariance matrix of interitem scores will be Ssofp ¼ c kk 1; �rs k; k �rd kk¼
c k �rd k þc kk �rs � �rd k; k 0 kk þc k 1� �rs; 0 k, which is identical to that of the bifactor

parallel model.

Second-order factor tau-equivalent model. The second-order factor tau-equivalent model requires

three restrictions that are identical to those of the second-order factor parallel model, except for the

equality constraint of the error variances (i.e., s2
ei
6¼ s2

ej
). The variance of item i is l2 þ s2

ei
, and the

covariance between item i and item j is l2 for i 6¼ j if i and j have the same first-order factor and is

l2g2 for i 6¼ j if i and j have different first-order factors. Let �ss denote l2, and let �sd denote l2g2.

The covariance matrix of the interitem scores will be Smq ¼kk �ss þ s2
ei
; �ss k; k �sd kk¼

k �sd k þ kk �ss � �sd k; k 0 kk þ k s2
ei
; 0 k, which is identical to that of the bifactor tau-

equivalent model.

Second-order factor congeneric model. The bifactor congeneric model is an unrestricted base model.

The variance of item i is l2
ip þ s2

ei
, and the covariance between item i and item j is lipljp for i 6¼ j if i

and j have the same first-order factor and is lipljqgpgq for i 6¼ j if i and j have different first-order

factors. The covariance matrix of the interitem scores will be Ssofc ¼kk l2
ip þ s2

ei
; lipljp k;

k lipljqgpgq kk¼k lipljqgpgq k þ kk ð1� g2
pÞlipljp k; k 0 kk þ k s2

ei
; 0 k. The sum of the k � k

matrix k lipljqgpgq k represents s2
Second�order and equals

Pm
p¼1

Pm
q¼1

Pk
i¼1

Pk
j¼1 lipljqgpgq ¼�Pm

p¼1

Pk
j¼1 lipgp

�2

. The sum of the m � m block matrix kk ð1� g2
pÞlipljp k; k 0 kk represents

s2
Disturbance and equals

Pm
p¼1

Pk
i¼1

Pk
j¼1ð1� g2

pÞlipljp ¼
Pm

p¼1

�Pk
i¼1 lipð1� g2

pÞ
1=2
�2

. The

derived formulas of second-order factor reliability (rSOF) and second-order factor hierarchical

omega (oHSOF) are as follows:

rSOF ¼
s2

Second�order þ s2
Disturbance

s2
X

¼

�Xm

p¼1

Xk

j¼1
lipgp

�2

þ
Xm

p¼1

�Xk

i¼1
lipð1� g2

pÞ
1=2
�2

s2
X

; and
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oHSOF ¼
s2

Second�order

s2
X

¼

�Xm

p¼1

Xk

j¼1
lipgp

�2

s2
X

:

Correlated factor model. The correlated factor model assumes that the observed score of item i consists

of three components such that Xi ¼ mi þ lipDp þ ei. Factors are free to be correlated with each other.

Let fpq denote CorðDp;DqÞ. This study fixes the variance of the factors to unity (i.e., VarðDpÞ ¼ 1)

without loss of generality to determine the scale. The factor Dp and error ei are defined to be

independent of each other. This study further assumes that errors are independent of each other

(i.e., Covðei; ejÞ ¼ 0 for all i, j). The variance of item i is l2
ip þ s2

ei
¼ l2

ipfpp þ s2
ei

, and the covariance

between item i and item j is lipljp ¼ lipljpfpp for i 6¼ j if i and j have the same factor Dp and is

lipljqfpq for i 6¼ j if i and j have different group factors. The covariance matrix of the interitem scores

will be Scf ¼k l2
ipfpp þ s2

ei
; lipljqfpq k¼k lipljqfpq k þ k s2

ei
; 0 k. The sum of the k � k matrix

k lipljqfpq k equals
Pm

p¼1

Pm
q¼1

Pk
i¼1

Pk
j¼1 fpqlipljq ¼

Pm
p¼1

Pm
q¼1 fpq

�Pk
i¼1 lip

��Pk
i¼1 liq

�
.

The reliability is defined as one minus the ratio of the sum of error variances to the sum of test score

variances: rXX
0 ¼ 1� s2

E

s2
X

. The derived formula of the correlated factor reliability is as follows:

rCF ¼

Xm

p¼1

Xm

q¼1
fpq

�Xk

i¼1
lip

��Xk

i¼1
liq

�
s2

X

:
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